

30 April 2002

L. D. Flippen, Jr.

U. S. Army Research Laboratory

AMSRL-SE-SS

Iflippen @arl.army.mil 301-394-1003

- Need very high accuracy: air burst lethality for prone infantry is very sensitive to even small range errors. Many sources can each contribute significant error.
- Severe design constraints: small volume, low unit cost, and extreme ruggedness are required for small/medium caliber projectiles. This precludes many options (specifically, GPS)

This is a very tough problem!

- Fire control computer simulates nominal trajectory and passes target time/turns to projectile before firing
- Timer used to gauge when targeted time value has been attained in-flight

or

Turns counter used to gauge when targeted turns count value has been attained in-flight

- Investigate various concepts of range sensing for direct fire, air burst fuzing in (two) 40mm prototypes:
 - Accuracy of various existing concepts
 - Maturity/viability of hardware required for each concept
 - Size/power/weight/ruggedness/cost considerations
 - Development and performance prediction of new concepts
- Algorithm development (FY01)
- Detailed range sensor design and lab evaluation (FY02)
- High-G qualified prototype design to ARDEC for field tests (FY03)

ALACV 40mm RFI Fuze Technology Specs

- Multifunction, modularly designed fuze
- Fuze technology must be adaptable to other caliber ranges
- Priority of functional modes:
 - Air burst, direct fire (ground target)
 - » Target range: 0 to 3 km
 - » Burst within +/- 5.0 m (Threshold) or +/- 3.0 m (Objective) of target range
 - Impact delay
 - Point detonate
 - Barrage mode "HOB" (desired)
 - » Ranges of 4500 m to 8500 m
 - » Burst at heights of between 3 to 5 m above surface

Sensor Integration Branch
ALACV RFI:
Generic "Conventional" Response

Air burst range sensing

- Higher precision timer
- Turns counter
- Muzzle-exit-velocity-corrected time
- Temperature insensitive propellant

Barrage mode

- Technical risk: energy storage requirements for > 5km
- Requires HOB prox sensor (impractical at 40mm)
- "String of pearls" if no HOB prox sensor

ARL Premises Concerning Conventional Approach

- Too many error sources to deal with individually
- Many error sources can each contribute significant range error
- No one "silver bullet" sensor modality (eg. timer, turns counter)
- Cannot handle multiple error sources
- Little or no attempt at sensor fusion
- Valuable sensor information is not utilized

Sensor fusion makes sense:

- Each sensor modality provides new information
- 1-D MEMS accelerometers add additional information when they become available

Conventional approaches are inadequate to meet ALACV goals. An innovative generic approach is needed!

Sensor Integration Branch Summary: Conventional vs. ARL Approach to Range Sensing

"Conventional wisdom" : Evolutionary	ARL approach: Revolutionary				
Methodologies • Time	Methodology Sensor Fusion:				
 Corrected Time (corrected for muzzle exit velocity) Turns (insensitive to muzzle exit velocity) Time/turns hybrid 	Time Turns Accelerometers Possibly others				
 Deals with one error source at a time (muzzle exit velocity) 	Deals with all error sources simultaneously				

ARL Modeling, Simulation, and Analysis

Developed new capability: Custom PRODAS module and Mathematica modules developed to allow:

- User-programmable fuze sensing algorithms in Mathematica
- Monte Carlo burst point error statistics
- Time, corrected time, turns count, 1D acceleration, and time-turns hybrid (built-in functions)
- Range-premature (and late HOB) ground impact bursts are accounted for

Initial and Nominal Error Source Data for Simulation

Initial conditions:

Target altitude = 0 m intended air burst altitude = 3.0 m Nominal values in PRODAS file:

 $V_0 = 1044$ m/s (40mm) & 805m/s (30mm) Standard met, etc.

ALACV 40mm prototypes:

Concept 12

Concept 2SW

Time-turns hybrid: turns counting for supersonic, timing for subsonic

30mm 789

Muzzle velocity
corrected time =
(nominal muzzle vel/
actual muzzle vel) x
nominal time to range

One-Sigma Error Sources (Arrow Tech default values) Occasion-to-occasion:

gun elevation	gun azimuth	gun twist	target range	muzzle velocity	ammo temp	velocity slope	Drag/Mass	lift	thrust	air temp	air pressure	wind (range & cross)
0.5 mils	0.5 mils	1.0 %	0.5 %	2.5 m/s	5.0 deg-C	0.25 m/s/deg-C	0.5 %	0.2 %	0.5 %	0.96 %	0.60 %	2.20 m/s
				lot-to- lot		LAT data (not one- sigma)	lot-to-lot			1/2 hour stale Met	1/2 hour stale Met	1/2 hour stale Met

Round-to-round:

gun dyn elevation	gun dyn azimuth	prj jump elevation	prj jump azimuth	muzzle velocity	Drag/Mass	lift	spin decay	thrust	range wind	cross wind	time set	turns set	accel set
0.6 mils	0.6 mils	0.5 mils	0.5 mils	3.0 m/s	0.5 %	0.5 %	2.0 %	0.5 %	0.5 m/s	0.5 m/s	0.1 %	0.1 %	0.1 %
gun dynamics		proj. disp. (TID)		round- to-round	round-to- round								

30mm Range Sensing Simulation Results

PRODAS MPM-4DOF 8,000 trajectories:

- Simulations at 16 target ranges (every 250 m out to 4000
- 50 occasions per target range value
- 10 rounds per occasion

30mm 789

ALACV 40mm Range Sensing Simulation Results

PRODAS MPM-4DOF 8,000 trajectories:

- Simulations at 16 target ranges (every 250 m out to 4000 m)
- 50 occasions per target range value
- 10 rounds per occasion

ALACV 40mm Range Sensing Simulation Results

PRODAS MPM-4DOF 8,000 trajectories:

- Simulations at 16 target ranges (every 250 m out to 4000 m)

- 50 occasions per target range value
- 10 rounds per occasion

Perturbed Error Source One-Sigma Values

PRODAS MPM-4DOF 8,000 trajectories, etc. (as in previous case)

- Round-round muzzle exit velocity oneserror reduced from 3.0 to 1.5m/s
- Twist one-s error reduced from 1% to 0.1%

Perturbed Error Source One-Sigma Values

PRODAS MPM-4DOF 8,000 trajectories, etc. (as in previous case)

- Air temperature and pressure one-s error increased to 1.50%
- Range and cross wind one-s error increased to 3.35m/s
- Drag/Mass round-to-round one-s error increased to 0.75%

ALACV 40-mm HOB Sensing Simulation Results

Note: Assumes gun-rugged **MEMS** accelerometer technology (under development)

PRODAS MPM-4DOF: 2,000 trajectories:

- Simulations at 4 target ranges: 4500 m, 5000 m, 6000 m, and 7000 m
- 50 occasions per target range value
- 10 rounds per occasion

ALACV 40mm HOB Sensing Simulation Results

Assumes current GMR magnetometer technology

PRODAS MPM-4DOF: 6,000 trajectories:

- 50 occasions per target range value
- 10 rounds per occasion
 - Simulations at 12 target ranges: every 250 m from 4500 m to 7250 m (max projectile range=7367m)

Fusion of multiple sensor data has potential to satisfy HOB accuracy goals without HOB prox sensors at little or no additional cost!

ALACV 40-mm Barrage Mode HOB Summary (Preliminary)

- Time/turns fusion: <10 m HOB error (1-sigma)
 - (+) Uses mature sensor technology
 - (-) Does not meet STO barrage mode goals
 - (+) Significant improvement in baseline performance
- Time/turns/accel fusion: <3 m HOB error
 - (++) Meets STO barrage mode (w/ range) goals at no extra cost
 - (++) Also could be used to meet PD and delay mode goals
 - (–) Requires gun-rugged accelerometer (emerging technology)
- Time/turns/orientation fusion: <1 m HOB error
 - (+) Meets STO barrage mode goals (almost meets range goals)
 - (+) Uses emerging (Harkins & Hepner, ARL-TR-2310) MAGSONDE technology
 - (–) Requires two magnetometers (or E-field sensors)

Time/turns/acceleration/orientation fusion: near-perfect?

ARL approach is revolutionary:

- Only algorithm to meet (and exceed) STO goals
- Adaptable to barrage (HOB) application (indirect fire)
- First to address all error sources simultaneously
- Readily extendable to additional/improved sensors
- Can be optimized (results shown are not optimal)
- Readily extendable to other caliber rounds
- Inexpensive back up to GPS and /or HOB prox sensor (subject to jamming and/or clutter) in large caliber

The ARL approach represents a new paradigm in range sensing and possibly in indirect fire HOB sensing!

Potential Issues w.r.t. Implementing ARL Algorithm

- FC-projectile data transfer time < dwell time associated with rate-of-fire
- On-board CPU/DSP computational speed
- Accessibility of round for setting
- Fire Control
 - Computational speed
 - Programming issues
 - Projectile interface

Reported results are based upon following minimum values (red):

Projectile CPU speed	0.325 MFLOPS	Motorola		
Program ROM	Estimated < 32 kB	DSP5685x: 120MHz, 1.8 V, < 50-120 mA \$4 each		
Program RAM	Estimated < 32 kB			
Data transfer from FC to projectile	2.6 kB/round	Demonstrated in OCSW (25 mm):		
	2.0 RD/TOUTIU	200 ms dwell time for 250 rounds/min		

Algorithm performance will improve with time!

- The ARL approach could revolutionize fuzing
 - Quantum improvement in range sensing accuracy
 - Also solves barrage mode requirements
- Applications to many munitions
- Would like to expand algorithm/simulation and method-optimization efforts started in FY01
- Need flight data to validate models/simulations

Sensor Integration Branch Air Burst Lethality

ALACV target: Soldiers in defilade

Comparisons between results for each simulated range sensing method are made on common basis of excluding bursts with NO POTENTIAL for lethality